

REVIEW

Biomarkers of effect in toads and frogs

ANDRÉS VENTURINO¹,2★, ENRIQUE ROSENBAUM², ADRIANA CABALLERO DE CASTRO², OLGA LILIANA ANGUIANO², LIDIA GAUNA^{2,3}, TERESA FONOVICH DE SCHROEDER^{2,4} and ANA MARÍA PECHEN DE D'ANGELO²

Received 22 November 2002, revised form accepted 24 March 2003

Amphibians are good bioindicators of environmental pollution due to their susceptibility to chemicals during their freshwater cycles. The effects of environmental pollution, together with changes in human activity and climate, have contributed to the reduction in the amphibian population over recent decades. However, toxicological research on amphibians has been rather scarce compared with that on other vertebrates. In this article we review the biochemical alterations underlying xenobiotic action and/or the detoxifying responses described for anuran species, with the aim of establishing possible biomarkers of effect. During the embryonic development of anurans, morphological and behavioural alterations are the effects most frequently cited in connection with chemical exposures. However, such biomarkers have a low sensitivity and are unspecific compared with biochemical alterations. Some primary pesticide targets, in particular cholinesterases for organophosphates and carbamates, have been evaluated. Esterases change seasonally and with the stage of development, and their sensitivity to anticholinesterase agents varies between species. Thus their use as biomarkers in anurans must be carefully analysed. Enzymes and endogenous compounds related to oxidative metabolism may also be used as biomarkers of effect. Glutathione pool, glutathione-S-transferases and metallothioneins respond in different ways to pesticides and heavy metals in anuran embryos and tadpoles. Mixed-function oxidases, in turn, are less developed in amphibians, and show a reduced induction in response to pesticide exposures. Endogenous polyamine levels are also proposed as good age-related biomarkers of damage. Finally, molecular biomarkers related to receptor binding, signal transduction and genetic response have gained increasing relevance, as they have been implicated in the fertilisation process and the earliest events in anuran development. The identification of transcription factors associated with the exposure of amphibians to xenobiotics as well as other alterations in hormone signalling appears highly promising. However, these techniques are likely to complement other methods. In conclusion, the use of several biomarkers with multiple endpoints is needed to link exposure to response and to provide better predictive tools for the environmental protection of endangered anuran species.

Keywords: amphibian, anuran, teratogens, cholinesterases, oxidative stress, molecular biomarkers.

^{*}Corresponding author: Andrés Venturino, LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400, 8300 Neuquén, Argentina. Tel: (+54) 299 4490385; fax: (+54) 299 4490385; e-mail: aventu@uncoma.edu.ar

¹ Cátedra de Química Biológica, Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Buenos Aires 1400-8300 Neuquén, Argentina

² LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Buenos Aires 1400-8300 Neuquén, Argentina

³ IUCS, Universidad Nacional del Comahue, Buenos Aires 1400-8300 Neuquén, Argentina

⁴ Escuela de Ciencia y Tecnología, Universidad Nacional de General San Martín, Alem 3901-1653 Villa Ballester, Buenos Aires, Argentina

Ecotoxicology of amphibians and the decline of global populations: the need for biomarkers

Amphibian populations have been declining globally over recent decades (Barinaga 1990, Wake 1991, Houlahan et al. 2000). The decline in South-American species has been even faster than the global mean, independently of a single worldwide (Houlahan et al. 2001) or a spatially and temporarily varying trend (Alford et al. 2001). Several reasons have been put forward to explain such declines, some arising directly or indirectly from human activities and others emerging from global and local climatic changes. These include the following: direct destruction of amphibian habitats by humans, chemical pollution, acid rain, fungal and bacterial infection, which may be in turn related to ozone depletion and an increase in ultraviolet exposure (Blaustein et al. 1994) and relative drought seasons in high altitude sites related to El Niño/Southern Oscillation cycles (Klesecker et al. 2001).

The ecotoxicology of amphibians has received scarce attention compared with that of other vertebrates. Nevertheless, a complete review on the topic has been recently published (Sparling et al. 2000). The authors report that only 2.7% of the literature covering aspects of ecotoxicology in the last 25 years (up to 1998) concerned amphibians. The reasons for this disparity are not clear, since the biomass of amphibians, their importance in the trophic chain and their relevance in the loss of biodiversity justify ecotoxicological concern. Amphibians are found in quite different habitats such as desert and forest, in varying climates and different altitudes. Because amphibians pass their first life stages in water and their adult life span as terrestrials, they are exposed to a wide range of contaminants. This, together with their feeding habits, the continuous processing of water through their gills, and their particular sensitivity to chemicals during their freshwater cycles, makes amphibians good bioindicators of the overall conditions of the environment (Dumpert and Zeitz 1984, Lefcort et al. 1998). Most amphibian species are susceptible to xenobiotics during fertilization and early development (Cooke 1972, Devillers and Exbravat 1992).

Over the last decade, biomonitoring has been increasing used to track environmental pollution (Whitfield 2001). Chemical analysis of water and soils represents a direct proof of the nature and degree of contamination, but sensor organisms can reveal the status of the dynamic scenario. Biomarkers of exposure, effect and susceptibility are needed to connect the presence of pollutants in the environment with their action in an organism. In this context, biomarkers can aid in assessing the health status of amphibian populations by acting as sublethal endpoints of intoxication.

We have been studying the effects and mechanisms of action of pesticides in the embryonic and larval ontogenesis of the South American toad Bufo arenarum, evaluating acute and chronic toxicology on recognized primary as well as secondary molecular targets. In the following section we review the biochemical alterations underlying xenobiotic action and/or the detoxifying responses described for anuran species, discussing their use as possible biomarkers of effect in amphibians in general and Bufo arenarum in particular, mainly in the embryonic and larval stages.

Morphological, physiological and biochemical changes caused by xenobiotics in anurans as biomarkers of effect

Morphological alterations induced in embryogenesis

Morphological alterations and impairment of normal growth are the most frequently described biomarkers of exposure to pesticides and other contaminants such as heavy metals. Table 1 summarizes the main developmental alterations described in the literature for anurans. Early work by Kaplan and Overpeck (1964) and Cooke (1970, 1972) described hyperactivity in frog and toad tadpoles exposed to organochlorine (OC) pesticides. We have evaluated the malformations elicited by OCs during the embryonic development of Bufo arenarum. Exposures were in general characterized by the appearance of body twisting and progressive dropsy, notocord alteration, defective gills, reduced weight and size, and shortening of the time to reach metamorphosis (De Llamas et al. 1985, Gauna et al. 1991, Caballero de Castro et al. 1997, Anguiano et al. 2001). These alterations have also been described in other exposed species (Schuytema et al. 1991). Organophosphates (OPs) and carbamates also cause body shortening with caudal fin folding, notocord bending and abnormal pigmentation in Bufo arenarum (Rosenbaum et al. 1988, Anguiano et al. 2001). Impaired growth, reduced body size, haemorrhage, abnormal organogenesis and paralysis have been described in other OP-exposed anuran embryos and tadpoles (Snawder and Chambers 1989, Alvarez et al. 1995, Schuytema et al. 1995, Berrill et al. 1997, Harris et al. 1998, Fordham et al. 2001). Heavy metals affect notocord, head, gill and caudal fin formation in Bufo arenarum, causing a decrease in growth and size and delaying development (Pérez-Coll et al. 1985, 1988). Similar alterations were observed in Rana catesbeiana, Rana luteiventris and Xenopus laevis (Rowe et al. 1996, Herkovits et al. 1997, Lefcort et al. 1998). Polychlorinated biphenyls (PCBs), pyrethroids, herbicides, fungicides and inclusive ultraviolet radiation are able to produce some of these developmental alterations in different anuran species (Table 1).

It would seem that the alterations in morphology and development are not specific for any class of compound. Most of the alterations are encountered after gastrulation has been completed. Table 2 summarizes the different effects described for the different classes of compounds in Table 1. The time needed for metamorphosis is increased for nearly all types of compounds, except for some OCs, which may produce a shortening of the development period. Both tadpole weight and size are commonly reduced by xenobiotics. The larval body is generally curved by chemical exposure, presenting a bent notocord, with defective formation of gills, gut and caudal fin, and generalized oedema. Haemorrhage was only described with OP exposure. Abnormal pigmentation in tadpoles is also a defect common to various classes of xenobiotics. The behavioural alterations caused by pesticide target impact include paralysis-hyperexcitability, body twisting, spasms, convulsions, limited movement and altered swimming.

Amphibians are massive reproducers that frequently display a higher number of malformations in normal populations (about 1%) than other species (Crawshaw 2000). Thus, distinguishing malformations due to xenobiotic exposure in the field from the normal background level may be rather difficult. Malformations have been detected in a few studies using caged tadpoles exposed to OCs, OPs, carbamates

Table 1. Anatomical and physiological alterations in growth induced by xenobiotics and physical agents during anuran development.

Compound	Species and stage	Effect	Reference
OCs			
Aldrin	Rana pipiens	Hyperactivity	Kaplan and Overpeck 1964
Chlordane	Rana pipiens	Hyperactivity	Kaplan and Overpeck 1964
DDT	Bufo arenarum larva	Body twisting; defective gills; progressive dropsy; reduced weight; shortening of metamorphosis time; erratic swimming; hyperexcitability	Caballero de Castro et al. 1997
	Rana temporaria tadpole	Reduced weight; notocord alteration; deformed snout; hyperactivity	Cooke 1970, 1972
	Rana sylvatica embryo	Hyperactivity	Licht 1985
Dieldrin	Bufo arenarum embryo	Exogastrulation; arrest in gastrula	Anguiano et al. 2001
	Bufo arenarum larva	Reduced size; abnormal pigmentation; defective gills; progressive dropsy; shortening of metamorphosis time	De Llamas et al. 1985
		Tail lashing; body twisting; erratic swimming; hyperexcitability	Gauna et al. 1991; Caballero de Castro et al. 1997
	Bufo bufo; Rana temporaria	Hyperactivity	Cooke 1970, 1972
	Rana pipiens	Hyperactivity	Kaplan and Overpeck 1964
	Xenopus laevis; Rana catesbeiana	Notocord deformity	Schuytema et al. 1991
Endosulfan	Rana sylvatica tadpole; Rana clamitans tadpole	Paralysis (low levels), hyperactivity (high levels)	Berrill et al. 1998
	Bufo americanus tadpole	Also impaired metamorphosis	Berrill et al. 1998
Endrin	Rana sphenocephala tadpole	Hyperactivity	Hall and Swineford 1980
	Bufo americanus; Rana catesbeiana; Rana sylvatica	Erratic swimming; disturbed equilibrium; abnormal posture	Hall and Swineford 1981
Lindane	Bufo arenarum embryo	Arrest in gastrula	Anguiano et al. 2001
	Bufo arenarum larva	Body twisting; defective gills; progressive dropsy; reduced weight; shortening of metamorphosis time; erratic swimming	Caballero de Castro et al. 1997
		Caudal fin bending; hyperactivity	Anguiano et al. 2001
Toxaphene	Rana pipiens	Hyperactivity	Kaplan and Overpeck 1964
	Rana sphenocephala tadpole	Hyperactivity	Hall and Swineford 1980
	Rana catesbeiana; Rana sylvatica; Bufo americanus	Erratic swimming; disturbed equili- brium; abnormal posture	Hall and Swineford 1981

Table 1 (Continued)

Compound	Species and stage	Effect	Reference
PCBs			
Arochlors	Bufo americanus; Bufo fowleri	Lordosis; scoliosis; oedema	Eisler and Beslisle 1996
Clophen; PCB 126	Xenopus laevis; Rana temporaria	Oedema; depigmentation; tail deformity; increased weight; delayed metamorphosis	Gutleb et al. 2000
OPs			
Azinphos methyl	Bufo arenarum larva	Reduced size; notocord bending; ab- normal pigmentation; defective gut and gills; swimming in circles	Caballero de Castro et al. 1997
	Rana clamitans embryo	Body shortening	Harris et al. 1998
	Hyla regilla tadpole; Xenopus laevis tadpole	Impaired growth	Schuytema et al. 1995
Fenitrothion	Bufo americanus tadpole; Rana cates- beiana tadpole; Rana clamitans tad- pole; Rana pipiens tadpole; Rana sylvatica tadpole	Paralysis	Berrill et al. 1997
Malathion	Bufo arenarum larva	Body twisting; tail lashing; limited movement	De Llamas et al. 1985
		Reduced size; tail folding; notocord bending; oedema	Rosenbaum et al. 1988
		Haemorrhage; reduced pigmentation; defective gut	Caballero de Castro et al. 1997
		Reduced gills; swimming in circles	Anguiano et al. 2001
	Rana catesbeiana tadpole	Abnormal gills; haemorrhage; altered equilibrium; paralysis	Fordham et al. 2001
(also malaoxon)	Xenopus laevis embryo	Reduced size; abnormal pigmentation; abnormal gut; notocord bending	Snawder and Chambers 1989
Methyl parathion	Rana perezi larva	Notocord bending; scoliosis; tail folding	Alvarez et al. 1995
Parathion	Bufo arenarum larva	Reduced size; notocord bending; oedema; haemorrhage	Caballero de Castro et al. 1997
		Reduced pigmentation; defective gut and gills; swimming in circles	Anguiano et al. 2001

Biomarkers in toads and frogs

A. Venturino et al.

Compound	Species and stage	Effect	Reference
Carbamates			
Carbaryl	Bufo arenarum larva	Reduced size; notocord bending; ab- normal pigmentation; defective gut and gills; swimming in circles	Caballero de Castro et al. 1997
	<i>Rana tigrina</i> tadpole <i>Rana blairi</i> tadpole	Reduced weight and growth Reduced motility	Marian et al. 1983 Bridges 1997
Carbofuran	Microhyla ornata tadpole	Tail bending; abnormal swimming	Pawar and Katdare 1984
Oxamyl	Rana temporaria tadpole	Body twisting; tail tip; malformations reduced development	Cooke 1981
Pirimicarb	Rana perezi tadpole	Notocord bending; limb malformation	Alvarez et al. 1995
Propoxur	Rana hexadactyla tadpole	Tail kinking; increased length; limb malformation	Raj et al. 1988
Pyrethroids			
Esfenvalerate	Rana blairi larva; Rana sphenocephala larva	Spasm; convulsive twisting; weight loss	Materna et al. 1995
Fenvalerate; permethrin	Rana clamitans embryo and larva Rana pipiens embryo and larva Rana sylvatica embryo and larva; Bufo americanus embryo and larva	Slower growth; body bending Paralysis; weakness Delayed metamorphosis	Berrill et al. 1993 Berrill et al. 1997 Berrill et al. 1993
Herbicides			
Cyanatryn	Rana temporaria tadpole	Lethargy; spasm; reduced weight	Scorgie and Cooke 1979
Diuron	Hyla regilla; Xenopus laevis Rana aurora	Deformities; delayed growth Limb malformations	Schuytema and Nebeker 1998 Schuytema and Nebeker 1998
Paraquat	Xenopus laevis embryo	Tail folding; abnormal gut; oedema	Visnara et al. 2000
Fungicides			
Chloranil; dichlone; nabam	Xenopus laevis embryo	Disrupted cephalic development; reduced size	Anderson and Prahlad 1976
Triphenyltin	Rana lessonae tadpole; Rana esculenta tadpole	Slower growth; delayed metamorphosis	Fioramonti et al. 1997
Heavy metals			
Lead	Bufo arenarum embryo and tadpole	Delayed development; body bending; microcephaly; defective gills; stunted tail	Pérez-Coll et al. 1988

Table 1 (Continued)

Compound	Species and stage	Effect	Reference
Cadmium	Bufo arenarum embryo	Skeletal malformations; delayed development; size reduction	Pérez-Coll et al. 1985
	Xenopus laevis embryo and tadpole	Body bending and shortening; micro- cephaly; eye and tail malformation; reduced pigmentation	Herkovits et al. 1997
Arsenic; barium; cadmium; chromium; selenium	Rana catesbaiana tadpole	Oral deformities; decreased growth	Rowe et al. 1996
Lead; zinc	Rana luteiventris tadpole	Reduced weight; reduced motility and fright response	Lefcort et al. 1998
Others			
Histamine; imidazole acetic acid	Bufo arenarum embryo and tadpole	Delayed development; oedema; organ displacement; abnormal intestine; de- fective gills; tail bending; heart beat reduction; reduced reaction; swimming in circles	Scolnik et al. 1987
Ultraviolet radiation	Bufo arboreas Hyla regilla; Rana cascadae	Lordosis; abnormal cornea; hyperplasia Lordosis	Worrest and Kimeldorf 1976 Hays et al. 1996

Biomarkers in toads and frogs

Table 2. Comparative summary of developmental alterations caused by classes of xenobiotics in anuran embryos and larvae.

Target	Effect	Type of compound
Developmental rate	Acceleration	OCs
•	Delay	PCBs, OPs, carbamates, pyrethroids, herbicides, fungicides, heavy metals
Weight	Reduction	OCs, OPs, carbamates, pyrethroids, herbicides, heavy metals
	Increase	PCBs
Size	Reduction	OCs, OPs, carbamates, fungicides, heavy metals
	Increase	Carbamates
Body shape	Twisting	OCs, PCBs, OPs, carbamates, pyrethroids, heavy metals
	Dropsy or oedema	OCs, PCBs, OPs, herbicides
Subcutaneous circulation	Haemorrhage	OPs
Tegument	Depigmentation	OCs, PCBs, OPs, carbamates, heavy metals
Notocord	Bending	OCs, PCBs, OPs, carbamates, heavy metals
Gills	Stunted	OCs, PCBs, OPs, carbamates, heavy metals
Snout	Deformities	OCs, heavy metals
Caudal fin	Folding/bending	OCs, PCBs, OPs, carbamates, herbicides, heavy metals
Gut	Protrusion	PCBs, OPs, carbamates, herbicides
Behaviour and locomotion	Hyperexcitability	OCs, pyrethroids, herbicides
(nervous system)	Spasm	Pyrethroids, herbicides
-	Paralysis	OCs, OPs, pyrethroids
	Weakness/lethargy	OPs, carbamates, pyrethroids, herbicides, heavy metals
	Altered equilibrium	OCs, OPs
	Circular swimming	

and herbicides (Mulla et al. 1963, Cooke 1973, 1977, 1981). Genotoxic alterations in amphibian development have been described in a few studies with pyrethroids (Rudek and Rozek 1992) and herbicides (Clements et al. 1997), although many other organic compounds such as polycyclic aromatic hydrocarbons (PAHs) also cause genotoxicity (Sparling 2000).

We may conclude that developmental growth alterations are relatively easy to record as macroscopic biomarkers of effect. However, they are not specific for pesticide class, as are also caused by other organic chemicals and heavy metals.

Signalling, transduction and genetic responses as molecular toxicology biomarkers

The development in molecular genomics and proteomics linked to the recognition of molecular targets provides the basis for more powerful biomonitoring techniques to protect the environment (Adams et al. 2001). The subacute and long-term effects of pesticide exposures leading to fertilization impairment, abnormal development and sexual dysfunction in adults involve molecular effectors in the signalling, transduction and genetic response to the stress. Receptors such as the aryl hydrocarbon receptor (Rowlands and Gustafsson 1997), the protein kinase/ phosphatase cascades (Matsumura et al. 1984) and nuclear transcription factors (Ashida and Matsumura 1998) play essential roles in the toxicity of pesticides and organic pollutants.

A central factor in initiating egg activation at fertilization is a rise in free Ca²⁺ in the egg cytosol, which occurs as a result of its inositol triphosphate-mediated release from the endoplasmic reticulum. Muscarinic receptors coupled to phospholipase C are thought to mediate second messenger release by phosphoinositide breakdown. In amphibians, lipophilic compounds coming in contact with laid oocytes easily pass though the tiny jelly coat and are then able to diffuse into plasma membranes. Membrane-associated processes such as second messenger signalling during fertilization (Kusano et al. 1977, Miyazaki 1988) might be then disrupted by lipophilic toxicants. Some compounds intercalate in the bilayer of oocyte membranes, causing phosphoinositide breakdown (Bernard et al. 1988) (Table 3). We have studied some of these processes, and found an increased turnover of phospholipids in Bufo arenarum oocytes as a consequence of exposure to dieldrin and azinphos methyl. Associated with these changes, blockade of an agonist-gated response via phospholipase C was observed. In addition, there was a retailoring of phospholipids through phospholipase A2 deacylation and lysophospholipid reacylation (Fonovich de Schroeder and Pechen de D'Angelo 1995a, 2000, Caballero de Castro et al. 1997). In vitro studies showed that dieldrin in fact activates phospholipase C, leading to a desensitized state of the enzyme (Fonovich de Schroeder and Pechen de D'Angelo 1995b). In addition, the free fatty acid pool was increased in dieldrin exposure, mainly as oleic acid (Fonovich de Schroeder and Pechen de D'Angelo 2000), which is the major acyl component in phosphatidyl choline and phosphatidyl ethanolamine from Bufo arenarum oocytes. As a consequence of oocyte exposures to OCs, OPs and carbamates, significant decreases in fertilization success have been observed in *Bufo arenarum* (Table 3).

Preliminary studies on molecular biomarkers in Bufo arenarum during early development indicate that exposure to OPs affects protein phosphorylation. Related to these changes, activator protein-1 response element (AP-1RE) binding transcription factors are downregulated, while cAMP response element (CRE)related transcription factors show a biphasic response as determined by electrophoretic gel mobility shift assay (EMSA) (Venturino et al. 2001c). c-fos repression and AP-1RE binding downregulation by pyrethroid exposure has been recently reported (Imanura et al. 2000). In turn, c-Jun is regulated by c-Jun amino terminal kinase (JNK), which is downregulated by glutathione-S-transferase (GST) heterodimerization (Finkel and Holbrook 2000). cAMP-dependent protein kinases and two nuclear transcription factors binding CRE are affected by dioxins (Matsumura et al. 1984, Ashida and Matsumura 1998). These results are encouraging in the search for early molecular biomarkers of response to pesticides in amphibians.

Endocrine disrupting chemicals (EDCs) and endocrine active chemicals interfere with signalling systems through hormone receptor binding, altering endocrine and sex determination processes. PCBs and PAHs cause sex reversal in male reptiles, but their effects in amphibians are largely unknown (Sparling 2000). Recent reports have described feminization of male frogs exposed to the herbicide atrazine in the laboratory and in the wild (Hayes et al. 2002a,b). Several key developmental and physiological processes are steroid- and thyroid hormonedependent throughout the amphibian life cycle. Thyroid hormones are essential for metamorphosis and are corticoid-modulated. Both testosterone and oestradiol

Table 3. Compounds affecting receptor binding, second messenger signalling and/or genetic responses as molecular biomarkers in anurans.

Species and stage	Compound	Effect	Reference
Bufo arenarum oocyte	Dieldrin	Increased phosphoinositide turnover; blockade of phospholipase C response	Fonovich de Schroeder and Pechen de D'Angelo 1995a
		Reduced fertilisation rate; activation/desensitization of phospholipase C; phospholipase A2 activation; lysophospholipid acyltransferase activation	Fonovich de Schroeder and Pechen de D'Angelo 1995b, 2000
	Azinphos methyl	Increased phosphoinositide turnover; blockade of phospholipase C response; reduced fertilization rate	Caballero de Castro et al. 1997
Bufo arenarum embryo	Malathion; azinphos methyl	Alterations in protein phosphorylation; downregulation of AP-1RE and CRE binding transcription factors	Venturino et al. 2001c
Kassina senegalensis arva	DDT	Developmental abnormalities	Hayes 2000
Rana pipiens adult	Atrazine	Aromatase induction; decrease in testosterone levels and hermaphroditism in males	Hayes et al. 2002b
Kenopus laevis oocyte	Maitoxin	Phosphoinositide breakdown	Bernard et al. 1988
dieldrin Tetrachlo	DDT; toxaphene; dieldrin	Vitellogenin induction	Palmer et al. 1998
	Tetrachlorbiphenyl; DDT	Oestrogen receptor binding	Lutz and Kloas 1999
	Atrazine	Aromatase induction; decrease in testosterone levels and hermaphroditism in males	Hayes et al. 2002a

inhibit amphibian metamorphosis (Hayes 2000). Few effects of EDCs have been reported in amphibians to date. Dioxins affect metamorphosis by targeting the thyroid system. Developmental abnormalities were observed in Kassina senegalensis exposed to dichlorodiphenyltrichloroethane (DDT) (Hayes 2000) (Table 3). In adult Xenopus laevis females, thyroid hormones stimulate oestrogen receptors, enhancing oestrogen-mediated induction of vitellogenin (May and Knowland 1980). Vitellogenin has become a recognized biomarker of effect for EDCs. OCs such as DDT, toxaphene and dieldrin may act as pro-oestrogens, inducing vitellogenin in male adults (Palmer et al. 1998). The level of binding to the liver oestrogen receptor has been effectively assessed for several aromatic compounds, including PCBs and DDT, in Xenopus laevis adults (Lutz and Kloas 1999). Another proposed mechanism of feminization in male Xenopus laevis and Rana pipiens adults exposed to atrazine is aromatase induction and testosterone conversion to oestrogen (Hayes et al. 2002a,b).

Acetylcholinesterase and other esterases

Acetylcholinesterase (AChE) activity is crucial at cholinergic synapses and muscular plates, contributing to the cessation of acetylcholine stimulation at the postsynaptic membrane once the nervous signal has been transmitted. AChE is considered the main target of OP insecticides, which bind irreversibly to the enzyme active site as suicide inactivators, and the reduction in its activity is generally associated with lethality. Nevertheless, AChE and butyrylcholinesterase (BChE) have another relevant role in the development of the brain and nervous system during early embryogenesis (Drews 1975, Krejci et al. 1991). AChE is recognized as a specific biomarker of effect in pesticide exposures (Adams 2001). Both BChE and the detoxifying activity of carboxylesterases (CEs) have been proposed as biomarkers of effect for OP and carbamate pesticides (Bartowiak and Wilson 1995, Sánchez et al. 1997). However, the use of AChE as a biomarker in carbamate and OP exposure is less well quantified in amphibians than in other vertebrate classes (Henry 2000).

We have evaluated the developmental pattern and seasonal variations in the activities of AChE, BChE and CEs in Bufo arenarum (Caballero de Castro et al. 1991, Caballero de Castro 2000). AChE and BChE activities were detectable from gastrulation on, and peaked at 5 days of development (complete operculum stage) in summer embryos. CE activity was detected in oocytes and the earliest stages of embryonic development, and also peaked at day 5 (Figure 1). Winter clutches showed delayed patterns of these enzymes, associated with a slower embryonic development.

OPs suppress the activity of these three enzymes or delay their appearance and progression in embryos recovered from transient exposures (Rosenbaum et al. 1988, Caballero de Castro et al. 1991). Embryos treated with malathion for 5 days recover between 25 and 40% of the peak activity after a delay of 2-3 days. Embryos treated for 3 days recover between 40 and 65% of the peak activity after a delay of 1 day. In Bufo arenarum larvae, the recovery times from exposure to different OPs (malathion, parathion and azinphos methyl) ranged from 1 to 7 days to achieve 70-100% AChE activity (Venturino et al. 1992, 1993, 2001b, Anguiano et al. 1994).

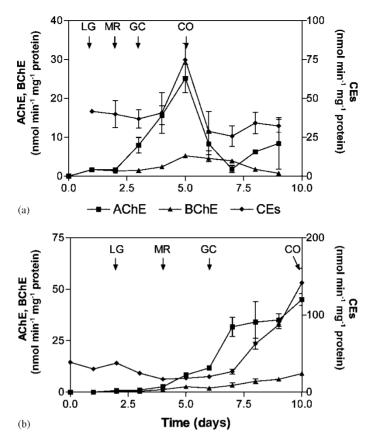


Figure 1. Developmental pattern and seasonal changes in esterase activities during *Bufo arenarum* embryogenesis. Esterase activities were determined in embryos obtained by *in vitro* fertilization at different stages of development during the summer (a) or winter season (b). The esterases analysed were acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterases (CEs). Stages achieved at days of development are indicated by arrows: LG, late gastrulae; MR, muscular response; GC, gill circulation; CO, complete operculum. Data from Caballero de Castro 2000.

Significant inhibition and a fast recovery were found with carbamate carbaryl. The OP temephos inhibited BChE in *Rana clamitans* larvae, but increased AChE activity (Sparling *et al.* 1996). This effect was attributed to inefficient oxidation of the OP to the oxon form, the active inactivator of AChE. Other organic compounds such as OCs may also affect cholinesterases; for instance, dieldrin decreases both AChE and BChE activities in *Bufo arenarum* embryos (De Llamas *et al.* 1985).

Determination of the effects of exposure to OPs or carbamate, as well as those of other toxicants, needs to take into account the species-specific variations associated with development and season. In some species such as *Xenopus laevis* tadpoles, AChE is highly resilient to anticholinesterase agents (Shapira *et al.* 1998). The important fluctuations in AChE, BChE and CEs due to seasonal and developmental changes observed in *Bufo arenarum* embryos make the assessment of control reference values difficult. The relatively fast recovery of the activities after an episodic exposure to pesticides may also complicate the assessment of field

effects. Consequently, the use of these enzymes as biomarkers in anuran species requires particular caution.

Biochemical responses related to pesticide oxidative metabolism and detoxification

Pesticide metabolism is generally linked to oxidative stress directly by generation of reactive oxygen species (ROS) through enzymatic transformation or by consumption of reduced co-substrates such as reduced nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) (Finkel and Holbrook 2000). Mixed-function oxidases (MFOs) are involved in the oxidative metabolism of practically all pesticides and contribute to ROS generation. Amphibians appear to have a less developed P450-dependent MFO system than that found in mammals (Sparling 2000). P450 induction is low in amphibians compared with other classes, reducing its effectiveness as a biomarker of effect (Eartl and Winston 1998, Huang et al. 1998). Moreover, a very large natural variation in the activity of several MFO components has been found in Rana temporaria adults, probably resulting from the hormonal changes associated with spawning (Harri 1980). MFO induction was demonstrated in malathion-exposed Bufo arenarum larvae (Venturino et al. 2001b) (Table 4).

Reduced glutathione (GSH) is perhaps the most important ROS scavenger participating in the control of the intracellular redox status (Finkel and Holbrook 2000). Some pesticides are detoxified by GSH conjugation or demethylation through a pathway involving GST activity, and alterations in the cellular antioxidant defence have been associated with OP exposures (Hai et al. 1997). Antioxidant enzymes, glutathione and lipid peroxidation levels are relevant biomarkers in aquatic toxicology (Doyotte et al. 1997). We have evaluated these different pathways related to pesticide oxidative metabolism in exposed Bufo arenarum embryos and larvae. Different OC and OP insecticides affect the reduced GSH pool, measured as acid-soluble thiols (ASTs), in toad embryos and larvae (Anguiano et al. 2001, Venturino et al. 2001a). Malathion, azinphos methyl and lindane decrease the reduced AST level to nearly 50% in embryos, whereas parathion and dieldrin do not affect it (Table 4). Larval stages are mainly affected by malathion and azinphos methyl, which deplete AST by up to a 30% of control levels. Nevertheless, all the pesticides tested induce GST activity in Bufo arenarum larvae, suggesting the involvement of this enzyme in their metabolism. Malathion also decreases total (reduced plus oxidized) AST, and methyl GSH has been detected in exposed toad larvae, corroborating the participation of the GST pathway in the detoxification of this insecticide (Venturino et al. 2001a,b). Thus, these biochemical parameters are biomarkers of the oxidative metabolism of some insecticides in exposed Bufo arenarum embryos and larvae. It is worth noting that mild exposures to these insecticides do not lead to oxidative stress, as lipid peroxidation levels remain similar to those in control tadpoles. GSH and metallothioneins, commonly used as biomarkers in metal exposure, have also been evaluated in exposed amphibians (Suzuki and Akitomi 1983, Suzuki and Kawamura 1984, Vogiatzis and Loumbourdis 1998). Other metabolic alterations have been studied in the ovary of adult Bufo arenarum females in the search for new biomarkers for metal exposure. The enzyme glucose 6-phosphate dehydrogenase is

Table 4. Biomarkers of oxidative stress, antioxidant defence and enzyme detoxification in anurans.

Biomarker	Species and stage	Compound	Effect	Reference
MFO	Bufo arenarum larva	Malathion	Induction	Venturino et al. 2001b
	Rana pipiens	Pentachlorobiphenyl	Induction	Huang et al. 1998
	Rana temporaria adult	DDT; seasonal variations	No effect	Harri 1980
GST	Bufo arenarum embryo and larva	Malathion; parathion; azinphos methyl; lindane; dieldrin	Induction	Anguiano et al. 2001; Venturino et al. 2001c
Metallothionein	Rana ridibunda adult	Cadmium	Induction	Vogiatzis and Loumbourdis 1998
	Rana catesbeiana larva and adult	Cadmium	Induction	Suzuki and Akitomi 1983
	Bombina orientalis adult; Bufo bufo japonicus adult; Hyla arborea japonica adult	Copper; zinc	Induction	Suzuki and Kawamura 1984
Glucose 6-phosphate dehydrogenase	Bufo arenarum adult	Zinc	Inhibition	Fonovich de Schroeder et al. 2000; Naab et al. 2001
GSH	Bufo arenarum embryo	Malathion; azinphos methyl; lindane	Decrease	Anguiano et al. 2001
	Bufo arenarum larva	Malathion	Decrease	Venturino et al. 2001a
	Bufo arenarum adult	Zinc	Increase	Fonovich de Schroeder et al. 2000; Naab et al. 2001
	Rana ridibunda	Cadmium	Increase	Vogiatzis and Loumbourdis 1998
GSH+GSSG (total)	Bufo arenarum larva	Malathion	Decrease	Venturino et al. 2001a
Lipid peroxidation	Bufo arenarum larva	Malathion; parathion; dieldrin; lindane	No effect	Venturino et al. 2001a,c
Polyamines	Bufo arenarum embryo	Malathion	Decrease	Venturino et al. 2001c
	-	Malathion (sublethal)	Increase	Venturino et al. 2001a
	Bufo arenarum larva	Malathion	No effect	Venturino et al. 2001a

GSH, reduced glutathione; GSSG, oxidized glutathione.

able to bind zinc, which is considered a micronutrient that does not normally accumulate in the tissues. This enzyme is inhibited by long-term exposure of females to zinc in Ringer solution. As the result of this inhibition, the oocytes are subjected to oxidative stress and respond with an increase in GSH content (Fonovich de Schroeder et al. 2000, Naab et al. 2001) (Table 4).

The levels of polyamines, which are essential for a wide range of biological processes, are altered in severe cellular stress and toxicosis associated with apoptosis via hydrogen peroxide generation and GSH depletion during embryonic development (Coffino and Poznanski 1991). We examined polyamine levels as biomarkers of the effects of pesticide on the embryogenesis of Bufo arenarum. Malathion concentrations causing acute toxicity decreased polyamine levels in middle and late embryonic stages (Venturino et al. 2001c), and this effect was related to impaired development and abnormal morphogenesis (Table 4). Sublethal exposures to malathion caused an increase in putrescine concentration at the end of embryonic development as a recovery response, while no effects were observed in larvae (Venturino et al. 2001a). Thus, polyamines may be useful biomarkers of pesticide effect and recovery responses during amphibian development, depending on the stage and level of exposure.

Conclusions

Different biochemical, physiological and morphological parameters may be needed at different stages in anuran development in order to assess exposure and response to contaminants.

Reductions in fertilization are partially associated with changes in the oocyte membrane phospholipid turnover, and alterations in the muscarinic acetylcholine receptor signalling pathways and other membrane-associated enzyme activities.

During early embryonic development, different chemicals may affect the nuclear transcription factors regulating gene expression, thus altering a cascade of responses. The identification of transcription factors associated with the exposure of amphibians to xenobiotics is highly promising. However, these methods are likely to complement other biomarkers. Among them, GSTs are induced by pesticides, in some instances lowering reduced AST pools (generally associated with GSH) and total GSH.

After gastrulation, malformations are commonly found following chemical exposure. However, developmental alterations in anurans are not specific to the chemicals involved and may be difficult to assess in the field.

Esterases show seasonal and developmental patterns that are abolished or delayed by insecticide exposures. Esterase activities show relatively fast recoveries after brief exposures, and their sensitivity to anticholinesterase agents vary among species, reducing their usefulness as biomarkers.

GSH, GSTs and metallothioneins respond to oxidative and metal stress in exposed embryos and tadpoles. MFO activities in tadpoles are low and are poorly induced by xenobiotics. Polyamines are depleted at the end of embryonic development by lethal exposures, and are related to teratogenesis, reduced growth

and reduced survival. On the other hand, sublethal exposures cause stress-related putrescine increases, associated with MFO induction.

Finally, in adult anurans a few specific biomarkers such as vitellogenin for EDCs and metallothioneins and glucose 6-phosphate dehydrogenase inhibition for heavy metals have been described.

In conclusion, the use of several biomarkers with different endpoints is needed to link exposure to response, and to provide better predictive tools for the environmental protection of endangered anuran species. These biomarkers, among others coming into use, provide a range and diversity of biological responses in toads and frogs that may be useful in environmental risk assessment after being validated in the field (Adams et al. 2001). Applying a variety of biomarkers in predictive ecotoxicology will improve the interpretation of effects and will help to ensure their significance in impact assessment.

Acknowledgements

We thank Professor Claudia Herczeg for her helpful assistance in manuscript language processing.

This work was supported by the National University of Comahue (grant I940) and ANPCyT-Argentina (grant 01-03729).

References

- ADAMS, S. M. 2001, Biomarker/bioindicator response profiles of organisms can help differentiate between sources of anthropogenic stressors in aquatic ecosystems. Biomarkers, 6, 33-44.
- ADAMS, S. M., GIESY, J. P., TREMBLAY, L. A. and EASON, C. T. 2001, The use of biomarkers in ecological risk assessment: recommendations from the Christchurch conference on Biomarkers in Ecotoxicology. Biomarkers, 6, 1-6.
- ALFORD, R. A., DIXON, P. M. and PECHMANN, J. H. K. 2001, Global amphibian population declines. Nature, 412, 499-500.
- ALVAREZ, R., HONRUBIA, M. P. and HERRÁEZ, M. P. 1995, Skeletal malformations induced by the insecticides ZZ-Aphox® and Folidol® during larval development of Rana perezi. Archives of Environmental Contamination and Toxicology, 28, 349-356.
- ANDERSON, R. J. and PRAHLAD, K. V. 1976, The deleterious effects of fungicides and herbicides on Xenopus laevis embryos. Archives of Environmental Contamination and Toxicology, 4, 312-323.
- ANGUIANO, O. L., MONTAGNA, C. M., CHIFFLET DE LLAMAS, M. and PECHEN DE D'ANGELO, A. M. 1994, Comparative toxicity of parathion in early embryos and larvae of the toad, Bufo arenarum Hensel. Bulletin of Environmental Contamination and Toxicology, 52, 649-655.
- ANGUIANO, O. L., CABALLERO DE CASTRO, A. and PECHEN DE D'ANGELO, A. M. 2001, The role of glutathione conjugation in the regulation of early toad embryos' tolerance to pesticides. Comparative Biochemistry and Physiology, 128C, 35-43.
- ASHIDA, H. and MATSUMURA, F. 1998, Effect of in vivo administered 2,3,7,8-tetrachlorodibenzo-pdioxin on DNA-binding activities of nuclear transcription factors in liver of Guinea pigs. Journal of Biochemical and Molecular Toxicology, 12, 191-203.
- BARINAGA, M. 1990, Where have all the froggies gone? Science, 247, 1033-1034.
- BARTOWIAK, D. J. and WILSON, B. W. 1995, Avian plasma carboxylesterase activity as a potential biomarker of organophosphate pesticide exposure. Environmental Toxicology and Chemistry, 14, 2149-2153.
- Bernard, V., Laurent, A., Deracourt, J., Clément-Durand, M., Picard, A., Le Peuch, C., BERTA, P. and DOREE, M. 1988, Maitoxin triggers the cortical reaction and phosphatidylinositol-4,5-bis-phosphate breakdown in amphibian oocytes. European Journal of Biochemistry, 174, 655-662.
- BERRILL, M., BERTRAM, S., WILSON, A., LOUIS, S., BRIGHAM, D. and STROMBERG, C. 1993, Lethal and sublethal impacts of pyrethroid insecticides on amphibian embryos and tadpoles. Environmental Toxicology and Chemistry, 12, 525-539.
- BERRILL, M., BERTRAM, S. and PAULI, B. 1997, Effects of pesticides on amphibian embryos and larvae. In Amphibians in Decline: Canadian Studies of a Global Problem. Herpetological Conservation,

- Number 1, edited by D. M. Green (St Louis: Society for the Study of Amphibians and Reptiles), pp. 233-245.
- BERRILL, M., COULSON, D., McGILLIVRAY, L. and PAULI, B. 1998, Toxicity of endosulfan to aquatic stages of anuran amphibians. Environmental Toxicology and Chemistry, 17, 1738-1744.
- BLAUSTEIN, A. R., HOFFMAN, P. D., HOKIT, D. G., KIESECKER, J. M., WALLS, S. C. and HAYS, J. B. 1994, UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences of the USA, 91, 1791–1795.
- BRIDGES, C. M. 1997, Tadpole swimming performance and activity affected by acute exposure to sublethal levels of carbaryl. Environmental Toxicology and Chemistry, 16, 1935-1939.
- CABALLERO DE CASTRO, A. C. 2000, Efectos letales y subletales del malatión sobre el desarrollo embrionario del sapo Bufo arenarum Hensel. Aspectos toxicológicos y bioquímicos. PhD thesis, Universidad Nacional del Sur, Bahía Blanca, Argentina.
- CABALLERO DE CASTRO, A. C., ROSENBAUM, E. A. and PECHEN DE D'ANGELO, A. M. 1991, Effect of malathion on Bufo arenarum Hensel development-I. Esterase inhibition and recovery. Biochemical Pharmacology, 41, 491-495.
- CABALLERO DE CASTRO, A., VENTURINO, A., KIRS, V., LOEWY, M., CARVAJAL, G. and PECHEN DE D'ANGELO, A. M. 1997, Exposure of toad embryos and larvae to pesticides. Use of nuclear techniques to determine their effect on the reproduction, survival and potential risk to Bufo arenarum populations. In: Proceedings of the International Symposium on the Use of Nuclear and Related Techniques for Studying Environmental Behaviour of Crop Protection Chemicals, Vienna 1996, edited by International Atomic Energy Agency (Vienna, Austria), IAEA-SM-343/14, 479-487.
- CLEMENTS, C., RALPH, S. and PETRAS, M. 1997, Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (Comet) assay. Environmental and Molecular Mutagenesis, 29, 277-288.
- COFFINO, P. and POZNANSKI, A. 1991, Killer polyamines? Journal of Cell Biochemistry, 45, 54-58.
- COOKE, A. S. 1970, The effect of p,p'-DDT on tadpoles of the common frog (Rana temporaria). Environmental Pollution, 1, 57-71.
- COOKE, A. S. 1972, The effect of DDT, dieldrin and 1,4-D on amphibian spawn and tadpoles. Environmental Pollution, 3, 51-68.
- COOKE, A. S. 1973, The effects of DDT, when used as a mosquito larvicide on tadpoles of the frog Rana temporaria. Environmental Pollution, 5, 259-273.
- COOKE, A. S. 1977, Effects of field applications of the herbicides diquat and dichlobenil on amphibians. Environmental Pollution, 12, 43-50.
- COOKE, A. S. 1981, Tadpoles as indicators of harmful levels of pollution in the field. Environmental Pollution Series A, 25, 123-133.
- Crawshaw, G. J. 2000, Diseases and pathology of amphibians and reptiles. In Ecotoxicology of Amphibians and Reptiles, edited by D. W. Sparling, G. Linder and C. A. Bishop (Pensacola: SETAC Press), pp. 199-231.
- DE LLAMAS, M. C., CABALLERO DE CASTRO, A. C. and PECHEN DE D'ANGELO, A. M. 1985, Cholinesterase activities in developing amphibian embryos following exposure to the insecticides dieldrin and malathion. Archives of Environmental Contamination and Toxicology, 14, 161-166.
- DEVILLERS, J. and Exbrayat, J. M. 1992, Ecotoxicity of chemicals to amphibians. In Handbook of Ecotoxicological Data, Vol. 1 (Great Britian: Gordon and Breach Scientific Publishing), 351 pp.
- DOYOTTE, A., COSSU, C., JACQUIN, C. M., BABUT, M. and VASSEUR, P. 1997, Antioxidant enzymes, glutathione and lipid peroxidation as relevant biomarkers of experimental or field exposure in the gills and the digestive gland of the freshwater bivalve Unio tumidus. Aquatic Toxicology, 39, 93-110.
- Drews, V. 1975, Cholinesterase in embryonic development. Progress in Histochemistry and Cytochemistry, 7, 3-25.
- DUMPERT, R. and ZEITZ, E. 1984, Platanna (Xenopus laevis) as a test organism for determining the embryotoxic effects of environmental chemicals. Ecotoxicology and Environmental Safety, 8, 55-74.
- EARTL, R. P. and WINSTON, G. W. 1998, The microsomal mixed function oxidase system of amphibians and reptiles: components, activities and induction. Comparative Biochemistry and Physiology, 121C, 85 - 105
- EISLER, R. and BESLISLE, A. A. 1996, Planar PCB Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. Biological Report Number 31 (Washington DC: National Biological Service), pp. 1-75.
- FINKEL, T. and HOLBROOK, N. J. 2000, Oxidants, oxidative stress and the biology of ageing. Nature, 408, 239 - 247
- FIORAMONTI, E., SEMLITSCH, R. D., REYER, H.-U. and FENT, K. 1997, Effects of triphenyltin and pH on the growth and development of Rana lessonae and Rana esculenta tadpoles. Environmental Toxicology and Chemistry, 16, 1940–1947.
- FONOVICH DE SCHROEDER, T. M. and PECHEN DE D'ANGELO, A. M. 1995a, Dieldrin modifies the hydrolysis of PIP₂ and decreases the fertilization rate in Bufo arenarum oocytes. Comparative Biochemistry and Physiology, 112C, 61-67.

- FONOVICH DE SCHROEDER, T. M. and PECHEN DE D'ANGELO, A. M. 1995b, The effect of dieldrin on Clostridium perfringens phosphatidylcholine phospholipase C activity. Pesticide Biochemistry and Physiology, 51, 170-177.
- FONOVICH DE SCHROEDER, T. M. and PECHEN DE D'ANGELO, A. M. 2000, The turnover of phospholipid fatty acyl chains is activated by the insecticide dieldrin in Bufo arenarum oocytes. Journal of Biochemical and Molecular Toxicology, 14, 82-87.
- Fonovich de Schroeder, T. M., Preller, A., Naab, F., Caraballo, M. E., Burlón, A., Cardona, M. A., Debray, M., Hojman, D., Ozafrán, M., Vázquez, M. and Pechen de D'Angelo, A. M. 2000, Acumulación de Zn en ovocitos de sapo Bufo arenarum. Efecto sobre el metabolismo de carbohidratos. Revista Brasileira de Toxicologia, 13, 55-62.
- FORDHAM, C. L., TESSARI, J. D., RAMSDELL, H. S. and KEEFE, T. J. 2001, Effects of malathion on survival, growth, development, and equilibrium posture of bullfrog tadpoles (Rana catesbeiana). Environmental Toxicology and Chemistry, 20, 179-184.
- GAUNA, L., CABALLERO DE CASTRO, M., CHIFFLET DE LLAMAS, M. and PECHEN DE D'ANGELO, A. M. 1991, Effects of dieldrin treatment on physiological and biochemical aspects of the toad embryonic development. Bulletin of Environmental Contamination and Toxicology, 46, 633-640.
- GUTLEB, A. C., APPELMAN, J., BRONKHORST, M., VAN DEN BERG, J. H. J. and MURK, A. J. 2000, Effects of oral exposure to polychlorinated biphenyls (PCBs) on the development and metamorphosis of two amphibian species (Xenopus laevis and Rana temporaria). The Science of the Total Environment, 262, 147-157.
- HAI, D. Q., VARGA, S. I. and MATKOVICS, B. 1997, Organophosphate effects on antioxidant system of carp (Cyprinus carpio) and catfish (Ictalurus nebulosus). Comparative Biochemistry and Physiology, 117C, 83-88.
- HALL, R. J. and SWINEFORD, D. 1980, Toxic effects of endrin and toxaphene on the southern leopard frog Rana sphenocephala. Environmental Pollution, 23A, 53-65.
- HALL, R. J. and SWINEFORD, D. M. 1981, Acute toxicities of toxaphene and endrin to larvae of seven species of amphibians. Toxicology Letters, 8, 331-336.
- HARRI, M. N. E. 1980, Hepatic mixed function oxidase (MFO) activities during the seasonal life cycle of the frog, Rana temporaria. Comparative Biochemistry and Physiology, 67C, 75–78.
- HARRIS, M. L., BISHOP, C. A., STRUGER, J., VAN DEN HEUVEL, M. R., VAN DER KRAAK, G. J., DION, D. G., RIPLEY, B. and BOGART, J. P. 1998, The functional integrity of northern leopard frog (Rana pipiens) and green frog (Rana clamitans) populations in orchard wetlands. I. Genetics, physiology, and biochemistry of breeding adults and young-of-the-year. Environmental Toxicology and Chemistry, 17, 1338-1350.
- HAYES, T. B. 2000, Endocrine disruption in amphibians. In Ecotoxicology of Amphibians and Reptiles, edited by D. W. Sparling, G. Linder and C. A. Bishop (Pensacola: SETAC Press), pp. 573-593.
- HAYES, T. B., COLLINS, A., LEE, M., MENDOZA, M., NORIEGA, N., STUART, A. A. and VONK, A. 2002a, Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the USA, 99, 5476-5480.
- HAYES, T., HASTON, K., TSUI, M., HOANG, A., HAEFFELE, C. and VONK, A. 2002b, Herbicides: feminization of male frogs in the wild. Nature, 419, 895-896.
- HAYS, J. B., BLAUSTEIN, A. R., KIESECKER, J. M., HOFFMAN, P. D., PANDELOVA, I., COYLE, D. and RICHARDSON, T. 1996, Developmental responses of amphibians to solar and artificial UVB sources: a comparative study. Photochemistry and Photobiology, 64, 449-456.
- HENRY, P. F. P. 2000, Aspects of amphibian anatomy and physiology. In Ecotoxicology of Amphibians and Reptiles, edited by D. W. Sparling, G. Linder and C. A. Bishop (Pensacola: SETAC Press), pp. 71 - 110.
- HERKOVITS, J., CARDELLINI, P., PAVANATI, C. and PEREZ-COLL, C. S. 1997, Susceptibility of early life stages of Xenopus laevis to cadmium. Environmental Toxicology and Chemistry, 16, 312-316.
- HOULAHAN, J. E., FINDLAY, C. S., SCHMIDT, B. R., MEYER, A. H. and KUZMIN, S. L. 2000, Quantitative evidence for global amphibian population declines. Nature, 404, 752-755.
- HOULAHAN, J. E., FINDLAY, C. S., MEYER, A. H., KUZMIN, S. L. and SCHMIDT, B. R. 2001, Global amphibian population declines - Reply. Nature, 412, 499-500.
- HUANG, Y.-W., MELANCON, M. J., JUNG, R. E. and KARASOV, W. H. 1998, Induction of cytochrome P450-associated monooxygenases in Northern Leopard frogs, Rana pipiens, by 3,3',4,4',5pentachlorobiphenyl. Environmental Toxicology and Chemistry, 17, 1564-1569.
- IMANURA, L., HASEGAWA, H., KURASHINA, K., HAMANISHI, A., TABUCHI, A. and TSUDA, M. 2000, Repression of activity-dependent c-fos and brain-derived neurotrophic factor mRNA expression by pyrethroid insecticides accompanying a decrease in Ca²⁺ influx into neurons. *Journal of* Pharmacology and Experimental Therapeutics, 295, 1175–1182.
- KAPLAN, H. M. and OVERPECK, J. G. 1964, Toxicity of halogenated hydrocarbon insecticides for the frog, Rana pipiens. Herpetologica, 20, 163-169.
- KLESECKER, J. M., BLAUSTEIN, A. R. and BELDEN, L. K. 2001, Complex causes of amphibian population declines. Nature, 410, 681-684.

- Krejci, E., Duval, N., Chatonnet, A., Vincens, P. and Massoullé, J. 1991, Cholinesterase-like domains in enzymes and structural proteins: functional and evolutionary relationships and identification of a catalytically essential aspartic acid. Proceedings of the National Academy of Sciences of the USA, 88, 6647-6651.
- KUSANO, K., MILEDI, R. and STINNAKRE, J. 1977, Acetylcholine receptors in the oocyte membrane. Nature, 270, 739-741.
- LEFCORT, H., MEGUIRE, R. A., WILSON, L. H. and ETTINGER, W. F. 1998, Heavy metals alter the survival, growth, metamorphosis, and antipredatory behavior of Columbia spotted frog (Rana luteiventris) tadpoles. Archives of Environmental Contamination and Toxicology, 35, 447-456.
- LICHT, L. E. 1985, Uptake of 14C-DDT by wood frog embryos after short term exposure. Comparative Biochemistry and Physiology, 81C, 117-119.
- LUTZ, I. and KLOAS, W. 1999, Amphibians as a model to study endocrine disruptors: 1. Environmental pollution and estrogen receptor binding. The Science of the Total Environment, 225, 49-57.
- MARIAN, M. P., ARUL, V. and PANDIAN, T. J. 1983, Acute and chronic effects of carbaryl on survival, growth and metamorphosis in the bullfrog (Rana tigrina). Archives of Environmental Contamination and Toxicology, 12, 271-275.
- MATERNA, E. J., RABENI, C. F. and LAPOINT, T. W. 1995, Effects of the synthetic pyrethroid insecticide, esfenvalerate, on larval leopard frogs (Rana spp.). Environmental Toxicology and Chemistry, 14, 613 - 622.
- MATSUMURA, F., BREWSTER, D. W., MADHUKAR, B. V. and BOMBIK, D. W. 1984, Alteration of rat hepatic plasma membrane functions by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Archives of Environmental Contamination and Toxicology, 13, 509-515.
- MAY, F. E. B. and KNOWLAND, J. 1980, The role of thyroxine on the transition of vitellogenin synthesis from noninducibility to inducibility during metamorphosis in Xenopus laevis. Developmental Biology, 77, 419-430.
- MIYAZAKI, S. I. 1988, Inositol 1,4,5-triphosphate-induced calcium release and guanine nucleotidebinding protein-mediated periodic calcium rises in golden hamster eggs. Journal of Cell Biology,
- MULLA, M., ISAAK, S. and AXELROD, H. 1963, Field studies on the effects of insecticides on some aquatic wildlife species. Journal of Economic Entomology, 56, 184–188.
- NAAB, F., VOLCOMIRSKY, M., BURLÓN, A., CARABALLO, M. E., DEBRAY, M., KESQUE, J. M., KREINER, A. J., Ozafrán, M. J., Schuff, J. A., Stoliar, P., Vázquez, M. E., Davidson, J., Davidson, M. and FONOVICH DE SCHROEDER, T. M. 2001, Metabolic alterations without metal accumulation in the ovary of adult Bufo arenarum females, observed after long term exposure to Zn^{2+} , followed by toxicity to embryos. Archives of Environmental Contamination and Toxicology, 41, 201-207.
- PALMER, B. D., HUTH, L. K., PIETO, D. L. and SELCER, K. W. 1998, Vitellogenin as a biomarker for xenobiotic estrogens in an amphibian model system. Environmental Toxicology and Chemistry, 17, 30 - 36.
- PAWAR, K. R. and KATDARE, M. 1984, Toxic and teratogenic effects of fenitrothion, BHC and carbofuran on embryonic development of the frog Microhyla ornata. Toxicology Letters, 22, 7-13.
- PÉREZ-COLL, C. S., HERKOVITS, J. and SALIBIÁN, A. 1985, Effects of cadmium on the development of an amphibian. Archivos de Biología y Medicina Experimental, 18, 33-40.
- PÉREZ-COLL, C. S., HERKOVITS, J. and SALIBIÁN, A. 1988, Embryotoxicity of lead on Bufo arenarum. Bulletin of Environmental Contamination and Toxicology, 41, 247-252.
- RAJ, T. P., JEBANESAN, A., SELVANAYAGAM, M. and MAHONAR, G. J. 1988, Effect of organophosphorus (Nuvan) and carbamate (Baygon) compounds on Rana hexadactyla (Lesson) with a note on body protein and liver glycogen. Geobios, 15, 25-32.
- ROSENBAUM, E. A., CABALLERO DE CASTRO, A., GAUNA, L. and PECHEN DE D'ANGELO, A. M. 1988, Early biochemical changes produced by malathion on toad embryos. Archives of Environmental Contamination and Toxicology, 17, 831-835.
- Rowe, C. L., Kinney, O. M., Fiori, A. P. and Congdon, J. D. 1996, Oral deformities in tadpoles (Rana catesbeiana) associated with ash deposition: effects on grazing ability and growth. Freshwater Biology, 37, 723-730.
- ROWLANDS, J. C. and GUSTAFSSON, J. A. 1997, Aryl hydrocarbon receptor-mediated signal transduction. Critical Reviews in Toxicology, 27, 109-134.
- RUDEK, Z. and ROZEK, M. 1992, Induction of micronuclei in tadpoles of Rana temporaria and Xenopus laevis by the pyrethroid Fastac 10 EC. Mutation Research, 125, 275-281.
- SÁNCHEZ, J. C., FOSSI, M. C. and FOCARDI, S. 1997, Serum 'B' esterases as a non destructive biomarker for monitoring the exposure of reptiles to organophosphorus insecticides. Ecotoxicology and Environmental Safety, 37, 45-52.
- SCHUYTEMA, G. S. and Nebeker, A. V. 1998, Comparative toxicity of diuron on survival and growth of Pacific treefrog, bullfrog, red-legged frog and African clawed frog embryos and tadpoles. Archives of Environmental Contamination and Toxicology, 34, 370-376.

- SCHUYTEMA, G. S., NEBEKER, A. V., GRIFFIS, W. L. and WILSON, K. N. 1991, Teratogenesis, toxicity, and bioconcentration in frogs exposed to dieldrin. Archives of Environmental Contamination and Toxicology, 21, 232-350.
- SCHUYTEMA, G. S., NEBEKER, A. V. and GRIFFIS, W. L. 1995, Comparative study of Guthion and Guthion 2S to Xenopus laevis and Pseudoacris regilla tadpoles. Bulletin of Environmental Contamination and Toxicology, 54, 382-388.
- Scolnik, A., Rengel, D. and Pisano, A. 1987, The action of imidazole acetic acid and histamine administered during the embryonic development of an amphibian. Microscopía Electrónica y Biología Celular, 11, 119-131.
- SCORGIE, H. R. A. and COOKE, A. S. 1979, Effects of the triazine herbicide cyanatryn on aquatic animals. Bulletin of Environmental Contamination and Toxicology, 22, 135-142.
- SHAPIRA, M., SEIDMAN, S., LIVNI, N. and SOREQ, H. 1998, In vivo and in vitro resistance to multiple anticholinesterases in Xenopus laevis tadpoles. Toxicology Letters, 102-103, 205-209.
- SNAWDER, J. E. and CHAMBERS, J. E. 1989, Toxic and developmental effects of organophosphorus insecticides in embryos of the South African clawed frog. Journal of Environmental Science and Health Part B, 24, 205-218.
- SPARLING, D. W. 2000, Ecotoxicology of organic contaminants to amphibians. In Ecotoxicology of Amphibians and Reptiles, edited by D. W. Sparling, G. Linder and C. A. Bishop (Pensacola: SETAC Press), pp. 461-494.
- SPARLING, D. W., Lowe, T. P. and PINKNEY, A. E. 1996, Toxicity of Abate® 4-E to green frog tadpoles. Bulletin of Environmental Contamination and Toxicology, 58, 475-481.
- SPARLING, D. W., LINDER, G. and BISHOP, C. A. (editors) 2000, Ecotoxicology of Amphibians and Reptiles (Pensacola: SETAC Press).
- SUZUKI, K. T. and AKITOMI, H. 1983, Difference in relative isometallothionein ratio between adult and larva of cadmium-loaded bullfrog Rana catesbeiana. Comparative Biochemistry and Physiology, 75C, 211 - 215
- SUZUKI, K. T. and KAWAMURA, R. 1984, Metallothionein present or induced in the three species of frogs Bombina orientalis, Bufo bufo japonicus and Hyla arborea japonica. Comparative Biochemistry and Physiology, **78C**, 35–38.
- Venturino, A., Gauna, L., Bergoc, R. M. and Pechen de D'Angelo, A. M. 1992, Effect of exogenously applied polyamines on malathion toxicity in the toad Bufo arenarum Hensel. Archives of Environmental Contamination and Toxicology, 22, 135-139.
- VENTURINO, A., GAUNA, E. L., PECHEN DE D'ANGELO, A. M. and BERGOC, R. M. 1993, Efecto de poliaminas sobre la toxicidad de malatión en larvas de Bufo arenarum Hensel. Acta Toxicológica *Argentina*, 1, 8–11.
- VENTURINO, A., ANGUIANO, O. L., GAUNA, L. E., COCCA, C., BERGOC, R. M. and PECHEN DE D'ANGELO, A. M. 2001a, Thiols and polyamines in the potentiation of malathion toxicity in larval stages of the toad Bufo arenarum. Comparative Biochemistry and Physiology, 130C, 191-198.
- Venturino, A., Gauna, L. E., Bergoc, R. M. and Pechen de D'Angelo, A. M. 2001b, Toxicokinetics of malathion in larval stages of the toad Bufo arenarum (Hensel): effect of exogenous spermidine. Pesticide Biochemistry and Physiology, 70, 142-150.
- Venturino, A., Rosenbaum, E., Caballero de Castro, A., Anguiano, O. L., Gauna, L. E., FONOVICH DE SCHROEDER, T. and PECHEN DE D'ANGELO, A. M. 2001c, Identification of biomarkers of pesticide effect in the toad Bufo arenarum, a bioindicator of environmental contamination, Congress on Biomarkers of Environmental Contamination, Póvoa de Varzim, Portugal, Theme 5: Biomarkers of exposure and/or effect, T5-P26.
- VISNARA, C., BATTISTA, V., VAILATI, G. and BACCHETTA, R. 2000, Paraquat induced embryotoxicity on Xenopus laevis development. Aquatic Toxicology, 49, 171–179.
- Vogiatzis, A. K. and Loumbourdis, N. S. 1998, Cadmium accumulation in liver and kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda, after exposure to CdCl2. Archives of Environmental Contamination and Toxicology, 34, 64-68.
- WAKE, D. B. 1991, Declining amphibian populations. Science, 253, 860.
- WHITFIELD, J. 2001, Vital signs. Nature, 411, 989-990.
- WORREST, R. C. and KIMELDORF, D. J. 1976, Distortions in amphibian development induced by ultraviolet-B enhancement (290-315 nm) of a simulated solar spectrum. Photochemistry and Photobiology, 24, 377-382.

